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In this paper, the mass transfer in a time varying thin liquid film over a stretching heated plate having 
variable temperature and concentration is analyzed. The analytical solution for the unsteady Navier- 
Stokes, energy and diffusion equations are obtained. A new similarity is found using group-theoretic 
analysis which renders the exact similar governing equations amenable to analytical solution using 
perturbation method. Numerical solution of the problem is also obtained showing good agreement with 
analytical results. Graphs of velocity, temperature, concentration, skin-friction, Nusselt number and 
Sherwood number are displayed for various values of pertinent parameters. 
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INTRODUCTION 
 
Thin films have many applications in industry, lubrications 
of machinery, fluid bearings, coating (Andersson et al., 
2000) including the preparation of thin films, printing and 
painting and in the adhesives. Biological applications 
include studies of liquid flow in the lungs and eyes. Some 
further areas of applications are wire and fiber coating, 
foodstuff processing, reactor fluidization, transpiration, 
cooling, polymer processing etc (Abel et al., 2009). 

Crane (1970) was the first to examine the semi-infinite 
fluid flow driven by a linearly stretching surface. Later on, 
Gupta and Gupta (1977), Vleggaar (1977), Carragher 
and Crane (1982), Grubka and Bobba (1985), Dutta et al. 
(1985), Jeng et al. (1986), Chen and Char (1988), Kumari 
et al. (1990) and Dandapat et al. (2004) studied various 
aspects of this problem, such as heat, mass and 
momentum transfer in viscous flows with or without 
suction through the sheet. All these studies were 
however made to study steady flow in a semi-infinite fluid 
layer driven by a continuous stretching sheet. The hydro-
dynamics of thin liquid film on an unsteady stretching 
sheet was  first  considered  by  Wang  (1990).  The  time 
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dependent Navier-Stokes equation is reduced to ordinary 
differential equation (ODE) through similarity trans-
formations with an unsteady parameter. Later on, Usha 
and Sridharan (1993) considered the similar problem of 
axisymmetric flow in a liquid film. Andersson et al. (2000) 
extended Wang’s problem by analyzing heat transfer in 
the liquid film driven by an unsteady stretching surface. 
Wang’s work was further extended to include the non-
Newtonian effects of fluid, heat transfer and the 
thermocapillarity effects by Dandapat et al. (2003). They 
discussed the physical mechanisms that govern the 
thermal characteristics for various Prandtl numbers and 
different values of the unsteadiness parameter S and 
presented the numerical solution after using a similarity 
transformation. The similarity transformations used by 
Andersson et al., (2000) transform the governing equa-
tions into a locally similar problem for which the numerical 
solution is presented. Later on, Chun Wang (2006) gave 
the homotopy analysis method (HAM) solution for the 
same problem and giving similarity transformation. 

Applications of thin film in heat exchangers, chemical 
processes, wire coating and in food processing also 
require understanding of mass transfer by the flow of thin 
film on a stretching sheet. According to the author’s 
knowledge, there are very few or no studies on mass 
transfer  by   a   thin  film  over  a  stretched  sheet,  so  in  
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Figure 1. Schematic diagram of the problem. 

 
 
 
addition to giving new similarity for the thin film flow, we 
also present here the mass transfer analysis by a thin film 
over a stretched heated plate. We introduce a new 
similarity using group-theoretic method which reduces the 
problem into self similar with a single parameter 
appearing in the equations. This parameter appears at a 
very convenient position suitable for perturbation 
expansion. Regular perturbation method is applied to get 
analytical solution. Numerical solution of the problem is 
also obtained and a very good agreement is found with 
analytical solution. 
 
 
FORMULATION OF THE PROBLEM 
 
A uniform thin film of viscous fluid of height 

( ) (1 ) /h t ct b   covers a sheet along x-axis where the 

sheet is emerged from a slit and is being stretched linearly with a 
velocity given by: 
 

( )
.

( )

h t x
U

h t
                                                      (1) 

 
Here, it is pertinent to note that we have used general stretching 
velocity. In the expression of h(t) stated earlier, both b and c are 

positive constants having dimension
-1 time  and   is the 

kinematic viscosity. This formulation of the height ( )h t is valid only 

for 1ct  . The temperature and concentration at the surface of 

the sheet ( sT  and sC ) are specified as: 

 

   0 0, , , ,s ref s refT T T g x t C C C m x t          (2) 

 

where 0T  and 0C  represent the slit temperature and 

concentration. In Equation 2, any constant temperature and 

concentration can be taken as reference temperature refT  and 

reference concentration refC . In Equation 2,  ,g x t  and 

 ,m x t  are arbitrary functions to be determined by self similar 

condition. Flow geometry and the coordinate system are shown in 
the Figure 1. 

The governing unsteady equations which describe the motion of 
the viscous fluid over the stretching sheet are the continuity 
equation, Navier-Stokes (boundary layer) equations, energy 
equation and the concentration equation: 
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with following boundary conditions 

 

, 0, , at     0

0, , 0, 0 at    ( ),

s su U v T T C C y
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v A y h t
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     (7) 

 
where A is non-dimensional adjusting parameter,   is the thermal 

diffusivity and D is the molecular diffusivity of the mass transport. 
The free surface condition at the surface of thin film requires 
tangential stress to be negligible. Thus, boundary condition 

0u y    at ( )y h t  tacitly assume that the film height and 

the boundary layer merges with each other. The surface of liquid 
film is assumed free of surface waves and smooth. Hence, due to 
inert atmosphere, interfacial shear and surface tension is neglected 
as it is done by other researchers for example, Andersson (2000). 
In this study, the cross diffusion effects are also assumed to be 
negligible compared with direct effects, modeled by Fourier’s law 
and Fick’s law as suggested by Gebhart and Pera (1971a, 1971b). 



 
 
 
 
SIMILARITY ANALYSIS 
 
We now develop similarity relations to reduce the equations into 
ODEs which would then be solved conveniently using both 
analytical and numerical method. We make a little digression from 
the commonly used similarity transformation which in fact generates 
non-similar problem. The new similarity transformation will be built 
using group-theoretic approach. The physical reason being that it is 
advisable to non-dimensionalize the velocity by the velocity of the 
deforming thin layer rather by the free stream velocity. The scaling 
transformation is found to be the best approach to achieve our end. 

Firstly, let us introduce the following non-dimensional variables  
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, , , , , , , .
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Under the new variables, the governing equations (3) to (6) take the 
form 
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with the corresponding boundary conditions 
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From Equations 9 to 13, Sc= /D  is Schmidt number, Pr= /   

is Prandtl number and Re=UL/  is Reynolds number. To make 

the equations parameter free, we take 
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                                                                                                   (14)           
 
The Equations 9 to 13 thus, transform into: 
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with the boundary conditions 
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The scaling transformation suggests to write 
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Here,   is transformation parameter and 

, , , , , , , , , ,a b c p q i j k l n o  are arbitrary parameters to be deter-

mined by the invariance condition on the equations. Equations 15 to 
19 take the form: 
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The similarity will be achieved by imposing the conditions  
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The system of equations can be solved for the constants b and d 
giving 
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The corresponding equivalent differential system is 
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Choosing the value for the parameter 0p p b , where the 0p  is 

another parameter, Equation 28 becomes 
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The similarity variable and the similarity functions are now obtained 
as 
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through Equation 8, 14 and 20. By using the similarity function of 
Equation 30, the stream function can be expressed as: 
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The y component of velocity takes the form 
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With the help of Equations 26 and 27, Equations 3 to 6 become 
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We have been successful in reaching out ODEs from partial 
differential equations but short of achieving complete similarity 
since the terms in Equations 34 to 36 do contain the old variables x 
and t. In order to achieve a complete symmetry in Equations 34 to 
36, we emphasize 
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where r and s are non negative real numbers. With this choice of 

( , )and ( , )g x t m x t  Equations 34 to 36 finally take the form 
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The significance of the proposed similarity transformation is quite 
apparent from equations (37)-(39) in which not only self similarity 
has been obtained but also a parameter occupies a very suitable 
place for perturbation analysis. 
 
 
ANALYTICAL SOLUTION 
 
In this section, we solve the problem given by Equations 37 to 39 
with boundary conditions of Equation 40. It is quite reasonable to 
assume   as a small parameter which is true for many 

engineering applications. 
For small alpha, we construct a straight forward expansion of the 
form 
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It is advisable to write A in a series in alpha such that 
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where 'nA s are to be determined. 

The unperturbed leading order system, from equations (37)-(40) 
is given by 
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The kth order systems for 1k   can be expressed as: 
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The leading order of Equations 43 with boundary conditions of 
Equation 44 has the solution 
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Four term perturbation solution that is, 
3( )O   for ,f   and   

can finally be written as in the Equations 48 to 50 and kA ’s turn out 

to be one. 
 

2 3
2 3 2 4 5 2 4 5 6 7( 3 ) (20 5 ) ( 3066 560 63 77 11 ),

2 10 840
f

  
                             (48) 

 
2

2 3 4 2 2 3 4

3
3 5 6 2 4 5 6

2 2 3 4 5 6 3 3 3 5 6

1 2 Pr( ) { Pr(24 12 3 ) Pr (32 16 4 )}
24

{( Pr( 576 240 36 6 ) Pr (72 90 72 12 )
360

Pr ( 576 120 180 126 21 ) Pr ( 384 160 24 4 ))},

r r r

r r

r r


         


       

        

        

        

          

       (49) 

 
2

2 3 4 2 2 3 4

3
3 5 6 2 4 5 6

2 2 3 4 5 6 3 3 3 5 6

1 2 Sc( ) { Sc(24 12 3 ) Sc (32 16 4 )}
24

{( Sc( 576 240 36 6 ) Sc (72 90 72 12 )
360

Sc ( 576 120 180 126 21 ) Sc ( 384 160 24 4 ))}.

s s s

s s

s s


         


       

        

        

        

          

            

                                                                                                     (50) 
 
 

NUMERICAL SOLUTION 
 

The numerical solution of the boundary value problem is obtained 
using shooting method in conjunction with sixth-order Runge-Kutta 
integration. For this purpose, we rewrite Equations 37 to 40 as: 
 

22 ( ) ,f f f f ff          
             (51) 

 

 Pr r r f f                                      (52) 

 

 Sc ,s s f f                                      (53) 

 

with the boundary conditions 
 

1

2 3

(0) 0, (0) 1, (0)

(0) 1, (0) , (0) 1, (0) .

f f f g

g g   

   

    

     (54) 

 

where g1, g2 and g3 are the missing initial conditions and can be 
determined by employing shooting method that is linked with sixth-
order Runge-Kutta method to find the solution of problem satisfying 
the given boundary conditions. 

Having the solution of the problem, we focus our attention to the 
other important quantities from the technological point of view that 

are the 
w  shear stress, rate of heat transfer at the surface 

wq and rate of mass transfer at the surface 
wm , defined as: 

 

0 0 0

, ,w w w

u T C
q k m D 

  

       
         

       y y y
y y y

       (55) 

 

The physical quantities can be written in terms of skin friction fC , 
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Nusselt number, Nu and Sherwood number, Sh, defined by: 
 

2
, Nu , Shw w w

f

xq xm
C

U k T D C




  

 

                       (56) 

 

Here, 0sT T T    and 0sC C C    are constant 

temperature and concentration differences. Using non-dimensional 

variables given in Equation 31, the skin friction, 
fC , the Nusselt 

number, Nu and the Sherwood number, Sh, become: 
 

1(0)
 or Re (0), Nu (0) / , Sh (0) / .f x

f
C f x h x h

xh


 

        


      (57) 

 

Here, Re /x h x   is the local Reynolds number based on the 

velocity of thin film boundary. 

 
 
RESULTS AND DISCUSSION 
 
The graphs of velocity, temperature and concentration 
profiles as shown, respectively in the Figures 2(a), (b) 
and (c), exhibit that all these quantities decrease with the 
increase in   deformation ratio of the boundary of thin 

film. The variation of temperature with the Pr and r is 
shown in Figure 3. Figure 3 shows that temperature is 
decreased with increase of both of these parameters. 
This is due to the reason that increase of Pr decreases 
the conductivity of the fluid so temperature decreases. 
Same effect is observed on concentration in Figure 4 due 
to increase of Schmidt number Sc and parameter s, as 
here increase in Sc decreases the molecular diffusivity D 
which in turn reduces the concentration. 

The effect of important parameters on skin-friction, 
mass transfer rate and on heat transfer rate is shown in 
Figures 5 to 7. The Figures 5 to 7 also support the 
behaviors of velocity, concentration and temperature 
already shown in Figures 2 to 4. As large values of 
Prandtl number, Pr, decrease the temperature which 
gives rise to a larger temperature gradient and ultimately 
heat transfer rate increases. Due to the similar reason, 
mass transfer rate also increases with increase in 
Schmidt number Sc.  
 
 

CONCLUSIONS 
 
The mass transfer in a time varying thin liquid film over a 
stretching heated plate was obtained. The following 
objectives were achieved. A new similarity was 
established using group-theoretic analysis. A self similar 
analytical solution was obtained using this similarity 
which is in excellant agreement for a wide range of 
Prandtl and Schmidt number but for small values of 
deformation ratio of thin film boundary   as it was used 

as perturbation parameter. However,  numerical  solution 
was also obtained and can be used for wide range of all  
the parameters. 
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Figure 2. (a), Velocity; (b), temperature; (c), concentration profiles for different values of   while Sc=0.2, 

s=0.2, Pr=0.7 and r=1.0. 
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Figure 3. Temperature profiles for 
various values of r and Pr while  =0.1, 

s=0.1, Sc=0.1. 
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Figure 4. Concentration profiles for various 
values of s and Sc while  =0.1, r=0.1, 

Pr=0.1. 
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Figure 5. (a), Skin-friction; (b), heat 
transfer rate; (c), mass transfer rate 

for different values of   while 

Sc=0.2, s=0.2, Pr=0.7 and r=1.0. 
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Figure 6. Heat transfer rate for various 
values of r and Pr while  =0.1, s=0.1, 

Sc=0.1. 
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Figure 7. Mass transfer rate for various 
values of s and Sc while  =0.1, r=0.1, 

Pr=0.1. 
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